Fronto-parietal network supports context-dependent speech comprehension
نویسندگان
چکیده
Knowing the context of a discourse is an essential prerequisite for comprehension. Here we used functional magnetic resonance imaging (fMRI) to disclose brain networks supporting context-dependent speech comprehension. During fMRI, 20 participants listened to 1-min spoken narratives preceded by pictures that were either contextually matching or mismatching with the narrative. Matching pictures increased narrative comprehension, decreased hemodynamic activity in Broca׳s area, and enhanced its functional connectivity with left anterior superior frontal gyrus, bilateral inferior parietal cortex, as well as anterior and posterior cingulate cortex. Further, the anterior (BA 45) and posterior (BA 44) portions of Broca׳s area differed in their functional connectivity patterns. Both BA 44 and BA 45 have shown increased connectivity with right angular gyrus and supramarginal gyrus. Whereas BA 44 showed increased connectivity with left angular gyrus, left inferior/middle temporal gyrus and left postcentral gyrus, BA 45 showed increased connectivity with right posterior cingulate cortex, right anterior inferior frontal gyrus, lateral occipital cortex and anterior cingulate cortex. Our results suggest that a fronto-parietal functional network supports context-dependent narrative comprehension, and that Broca׳s area is involved in resolving ambiguity from speech when appropriate contextual cues are lacking.
منابع مشابه
Predictions in speech comprehension: fMRI evidence on the meter-semantic interface
When listening to speech we not only form predictions about what is coming next, but also when something is coming. For example, metric stress may be utilized to predict the next salient speech event (i.e. the next stressed syllable) and in turn facilitate speech comprehension. However, speech comprehension can also be facilitated by semantic context, that is, which content word is likely to ap...
متن کاملMultivariate activation and connectivity patterns discriminate speech intelligibility in Wernicke's, Broca's, and Geschwind's areas.
The brain network underlying speech comprehension is usually described as encompassing fronto-temporal-parietal regions while neuroimaging studies of speech intelligibility have focused on a more spatially restricted network dominated by the superior temporal cortex. Here we use functional magnetic resonance imaging with a novel whole-brain multivariate pattern analysis (MVPA) to more fully cha...
متن کاملThe Motor Somatotopy of Speech Perception
Listening to speech recruits a network of fronto-temporo-parietal cortical areas. Classical models consider anterior (motor) sites to be involved in speech production whereas posterior sites are considered to be involved in comprehension. This functional segregation is challenged by action-perception theories suggesting that brain circuits for speech articulation and speech perception are funct...
متن کاملNeural development of networks for audiovisual speech comprehension.
Everyday conversation is both an auditory and a visual phenomenon. While visual speech information enhances comprehension for the listener, evidence suggests that the ability to benefit from this information improves with development. A number of brain regions have been implicated in audiovisual speech comprehension, but the extent to which the neurobiological substrate in the child compares to...
متن کاملNeural processing associated with comprehension of an indirect reply during a scenario reading task.
In daily communication, we often use indirect speech to convey our intention. However, little is known about the brain mechanisms that underlie the comprehension of indirect speech. In this study, we conducted a functional MRI experiment using a scenario reading task to compare the neural activity induced by an indirect reply (a type of indirect speech) and a literal sentence. Participants read...
متن کامل